Characterisation of assembly and ubiquitylation by the RBCC motif of Trim5α
نویسندگان
چکیده
The post-entry restriction factor Trim5α blocks infection of retroviral pathogens shortly after the virus gains entry to the cell, preventing reverse transcription and integration into the host genome. Central to the mechanism of restriction is recognition of the lattice of capsid protein that forms the inner-shell of the retrovirus. To recognise this lattice, Trim5α has been shown to assemble into a large hexagonal array, complementary to the capsid lattice. Structures of the Trim5α coiled-coil region reveal an elongated anti-parallel dimer consistent with the edges of this array placing the Bbox domain at each end of the coiled-coil to facilitate assembly. To investigate the nature of this assembly we have designed and characterised a monomeric version of the TRIM RBCC motif with a truncated coiled-coil. Biophysical characterisation by SEC-MALLS, AUC, and SAXS demonstrate that this construct forms compact folded domain that assembles into a trimer that would support the formation of a hexagonal lattice. Furthermore, the RING domain and elements of the coiled-coil region are shown to contribute to assembly. Ubiquitylation assays demonstrate that this assembly increases ubiquitylation activity providing a link from recognition of the capsid lattice and assembly to the activation of innate immune signalling and restriction.
منابع مشابه
Role of TRIM5α RING domain E3 ubiquitin ligase activity in capsid disassembly, reverse transcription blockade, and restriction of simian immunodeficiency virus.
The mammalian tripartite motif protein, TRIM5α, recognizes retroviral capsids entering the cytoplasm and blocks virus infection. Depending on the particular TRIM5α protein and retrovirus, complete disruption of the TRIM5α RING domain decreases virus-restricting activity to various degrees. TRIM5α exhibits RING domain-dependent E3 ubiquitin ligase activity, but the specific role of this activity...
متن کاملThe Antiviral Spectra of TRIM5α Orthologues and Human TRIM Family Proteins against Lentiviral Production
BACKGROUND Rhesus monkey TRIM5α (TRIM5αrh) recognizes the incoming HIV-1 core through its C-terminal B30.2(PRYSPRY) domain and promotes its premature disassembly or degradation before reverse transcription. Previously, we have shown that TRIM5αrh blocks HIV-1 production through the N-terminal RBCC domain by the recognition of Gag polyproteins. Although all TRIM family proteins have RBCC domains...
متن کاملOrigin and Evolution of TRIM Proteins: New Insights from the Complete TRIM Repertoire of Zebrafish and Pufferfish
Tripartite motif proteins (TRIM) constitute a large family of proteins containing a RING-Bbox-Coiled Coil motif followed by different C-terminal domains. Involved in ubiquitination, TRIM proteins participate in many cellular processes including antiviral immunity. The TRIM family is ancient and has been greatly diversified in vertebrates and especially in fish. We analyzed the complete sets of ...
متن کاملO15: Using Stromal Cell-Derived Factor-I as Bio Active Motif in A Novel Self-Assembly Peptide Nanofiber Scaffold: an Approach to Improve Cell Therapy in Brain Injury
Traumatic brain injury (TBI) is one of the main causes of mortality and morbidity worldwide. Despite extensive investigations over the past few decades, no effective therapies exist to improve the brain function in patients with TBI. Neural tissue engineering is an attractive therapeutic approach to restore the brain structure and function of damaged tissue. Bioactive motif of Stromal cell-deri...
متن کاملOvine TRIM5α can restrict visna/maedi virus.
The restrictive properties of tripartite motif-containing 5 alpha (TRIM5α) from small ruminant species have not been explored. Here, we identify highly similar TRIM5α sequences in sheep and goats. Cells transduced with ovine TRIM5α effectively restricted the lentivirus visna/maedi virus DNA synthesis. Proteasome inhibition in cells transduced with ovine TRIM5α restored restricted viral DNA synt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016